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properties of ethanol in adult mice
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Abstract

Evidence suggests that the developing adolescent brain may be especially vulnerable to long-term neurobehavioral consequences following
ethanol exposure and withdrawal. In the present study, we examined the long-term effect of adolescent ethanol withdrawal on a subsequent EtOH-
induced conditioned taste aversion (CTA). Periadolescent and adult C3H mice were exposed to 64 h of continuous (single withdrawal) or
intermittent (multiple withdrawal) ethanol vapor. Following each ethanol exposure, animals received either 0, 1, 2, or 3 mg/kg diazepam (DZP) in
an attempt to counteract the possible effect of ethanol withdrawal. About 6 weeks following ethanol and DZP treatment, animals were tested for an
EtOH-induced CTA. As expected, exposure to EtOH during adolescence attenuated the EtOH-induced CTA as compared to controls.
Unexpectedly, administration of DZP during withdrawal did not spare but rather mimicked the attenuation of the EtOH-induced CTA seen in
animals exposed to ethanol in adolescence. This attenuation was not evident when EtOH and/or DZP was administered in adulthood. Given the
similar mode of action of EtOH and DZP on the GABA system, the principal implication of the present findings is that the intoxicating effect of
ethanol on the developing brain can result in long-term changes in the aversive properties of EtOH.
© 2006 Elsevier Inc. All rights reserved.
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1. Introduction

Alcohol consumption and intoxication are common among
the adolescent population. The National Adolescent Survey,
reports that 25.9% of eighth-graders and 47.2% of tenth-graders
consumed an intoxicating level of alcohol at least once in their
lifetime (Windle, 1990). More recent findings from the
Monitoring the Future survey indicate that 30% of individuals
in the 12th grade reported consuming five or more drinks,
consecutively, in the most recent 2 weeks before the survey
(Johnston et al., 2005). Perhaps even more startling are
epidemiological studies suggesting that the age at which
alcohol experimentation is initiated may profoundly impact
the likelihood of developing substance abuse disorders later in
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life (Clark et al., 1998; Duncan et al., 1997; Grant and Dawson,
1997).

Numerous studies show that the developing adolescent brain
may be more vulnerable to the effects of alcohol due to the
relatively plastic nature of the adolescent CNS (Spear and
Varlinskaya, 2005; Slawecki and Roth, 2004; Slawecki et al.,
2004; Yttri et al., 2004). The adolescent developing CNS is
characterized by significant neuronal changes in virtually every
neurotransmitter system (for review see Witt, 1994; Spear,
2000). Clinical findings regarding adolescent alcohol abuse
relate the above neurodevelopmental changes and adolescent
alcohol exposure during this period to severe long-term
functional deficits (Brown and Tapert, 2004; Brown et al.,
2000). Various animal studies suggest that alcohol exposure
during this sensitive period may disrupt normal neurodevelop-
mental processes, which may underlie changes in subsequent
adult responses to ethanol (McBride et al., 2005; Sircar and
Sircar, 2005; White and Swartzwelder, 2004; White et al., 2002;
Crews et al., 2000).
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Previous findings from our laboratory demonstrate, that
periadolescent ethanol exposure will alter the aversive
properties of ethanol during a subsequent adult exposure,
as measured in an ethanol-induced conditioned taste aversion
(CTA; Graham and Diaz-Granados, 2001, abstract). In
addition, periadolescent ethanol treatment followed by multi-
ple withdrawal episodes (as compared to ethanol treatment
followed by a single withdrawal episode) produces a greater
degree of attenuation during subsequent adult ethanol-
induced CTA learning (Graham and Diaz-Granados, 2001,
abstract). These findings suggest that the distinct physiolo-
gical state of periadolescent ethanol withdrawal may alter
adult ethanol responsiveness. Diazepam (DZP), a benzodia-
zepine, has been shown to reduce ethanol withdrawal
symptoms in rodents that experienced after ethanol exposure
(Riihioja et al., 1997). In the present study, we investigated
the long-term effects of periadolescent ethanol withdrawal,
by administering DZP during peak withdrawal following
periadolescent ethanol exposure, on a subsequent EtOH-
induced CTA. We tested the long-term effects of EtOH
withdrawal with the administration of DZP following
periadolescent ethanol exposure on the aversive properties
of ethanol during adulthood. In addition, as a method of
comparison, we also investigated the effects of adult
withdrawal on the aversive properties of ethanol during a
subsequent (6-week delay) adult exposure.

2. General methods

2.1. Subjects

Subjects (N=306) were male C3H mice obtained from
Charles River Laboratories (Raleigh, NC). Mice were received
on post-natal day (PD) 22 and housed four to a standard
Plexiglas home cage in the IACUC-approved Baylor University
Neuroscience Animal Facility until the beginning of experi-
mentation. Unless otherwise indicated, animals were main-
tained under a 12-h dark/light cycle with access to rodent lab
chow and water ad libitum.

2.2. Route of ethanol administration

Ethanol preexposure was administered via inhalation
using Plexiglas inhalation chambers (61×38×61 cm3)
(modified after Goldstein, 1972). The inhalation apparatus
is designed to deliver ethanol to a volatilizing flask at a rate
of 200 μl/min and then to the ethanol chamber at a rate of
7 l/min resulting in an approximate chamber ethanol
concentration of 13 mg/l. Prior to the start of the
experimental procedure, all treatment animals received a
1.6 g/kg ethanol loading dose which includes a 1 mmol/kg
dose of pyrazole, an alcohol dehydrogenase inhibitor.
Pyrazole is used to maintain and stabilize blood ethanol
concentration levels (BECs). In addition, all control animals
also received an initial injection of pyrazole to control for
any pyrazole-related effects (Crabbe et al., 1981). Animal
body weight and water intake were measured and recorded
each evening prior to the administration of pyrazole and/or
ethanol in order to monitor the overall health of the
animals. In addition, animal body weight and water intake
were also measured and recorded at the end of the exposure
period.

2.3. Diazepam administration

All animals received DZP (Sigma Aldrich) treatment
approximately 4 h after removal from the ethanol chamber via
intraperitoneal (i.p.) injections in one of the following doses 0,
1, 2, or 3 mg/kg. Animals received DZP injections 4 h after
removal from the chamber because this is the time point at
which behavioral signs of ethanol withdrawal become apparent
(Becker et al., 1997).

2.4. Conditioned taste aversion

Approximately 6 weeks following chronic ethanol expo-
sure, animals were individually housed with food and water
ad libitum, and allowed to acclimate to the testing
environment 24 h prior to the start of the conditioning
procedure. The taste aversion conditioning procedure lasted
for a total of 10 days and consisted of 5 days of water
restriction, 1 day of conditioning, 1 day of recovery, and
3 test days. Animal body weight was recorded daily
throughout the ethanol-induced CTA procedure to monitor
the overall health of the animals. Water access throughout the
CTA procedure was administered in 15-ml graduated
centrifuge tubes. Supplied fluids consisted of deionized
water and a .15% (w/v) saccharin water solution (saccharin
dissolved in deionized water).

2.5. Sampling and determination of ethanol concentrations

Blood and chamber air concentration samples were
collected daily throughout the ethanol exposure period.
Immediately following ethanol pre-exposure, blood samples
were taken from the retro-orbital sinus for subsequent blood
ethanol analysis. Blood samples were collected on ice and
then diluted 50 :1 with perchloric acid (3.4% v/v). The
samples were vortexed and centrifuged at 8000×g. The
resulting supernatant was then used in a modified enzymatic
assay based on the Calbiochem-Behring method (La Jolla,
CA) to determine BECs.

2.6. Statistical analysis

Saccharin consumption on the day of conditioning was
compared by 2-factor ANOVA (EtOH×DZP). Within subjects
saccharin consumption (conditioning day vs. test day 1) was
compared for an entire group by paired t-test. Saccharin
consumption during the subsequent test days was compared
by 2-factor ANOVA (EtOH×DZP) with repeated measures on
test session. Additional post hoc comparisons were conducted
where appropriate using Fisher's Least Protected Significant
Difference test (FLSD).



Table 1
Blood ethanol concentration (BEC) and body weight for Experiments 1 and 2

Treatment group BEC (mg/dl) Initial body wt (g) Final body wt (g)

Adolescent CECON – 19.41± .76 19.05± .88
Adolescent MWCON – 18.55± .54 18.25± .32
Adolescent CE64 243±.09 17.25± .40 16.28± .66
Adolescent MW64 255±.13 19.76± .18 18.6± .22
Adult CECON – 24.42± .45 23.94± .39
Adult MWCON – 25.13± .59 24.69± .43
Adult CE64 263±.02 26.76± .63 25.29± .8
Adult MW64 267±.014 25.45± .36 23.99± .41

Blood samples for BEC determination were taken at the time of removal from
the inhalation chamber following chronic administration of ethanol. Initial and
final body weights were recorded at the beginning and end of the 64-h
continuous or intermittent ethanol exposure. Body weight and BEC levels
corresponding to each ethanol pre-exposure are pooled across DZP treatment for
clarity (no differences between DZP treatment within a group).
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3. Experiment 1: periadolescent ethanol withdrawal

The purpose of Experiment 1 was to examine the long-term
effects of periadolescent ethanol withdrawal (following con-
tinuous or intermittent ethanol exposure) on the associative
properties of ethanol in adulthood. Periadolescent C3H mice
were pre-exposed to ethanol during adolescence, 6 weeks prior
to conditioning. Following ethanol preexposure, animals
received DZP, a benzodiazepine, which has previously been
shown to reduce the symptoms associated with ethanol
withdrawal.

3.1. Specific procedures

On PD 28, periadolescent mice were randomly assigned to
1 of 16 groups receiving continuous ethanol exposure,
intermittent ethanol exposure, or the appropriate control
procedure. The continuous exposure treatment groups con-
sisted of animals receiving 64 h of chronic ethanol exposure
via inhalation. Approximately 4 h after removal from the
inhalation chamber, animals received an i.p. injection of 0, 1,
2, or 3 mg/kg DZP. These groups are denoted as ETOHCE-
D0, ETOHCE-D1, ETOHCE-D2, and ETOHCE-D3, respec-
tively. The appropriate control groups are denoted as
CONTROL-D0, CONTROL-D1, CONTROL-D2, and CON-
TROL-D3, respectively. These animals were treated identi-
cally to the ethanol-exposed animals with the exception of the
ethanol exposure.

The intermittently exposed treatment group received 4
sessions of 16 h of chronic ethanol exposure resulting in a
total of 64 h of periadolescent ethanol exposure. Thus, animals
experienced 4 episodes of ethanol withdrawal (MW – multiple
withdrawal), each 8 h in duration. During each of the four
withdrawal periods, beginning 4 h after removal from the
chamber, animals received a diazepam injection of 0, 1, 2, or
3 mg/kg DZP. These groups are denoted as ETOHMW-D0,
ETOHMW-D1, ETOHMW-D2, and ETOHMW-D3, respec-
tively. Four appropriate control groups (CONTROL-D0, CON-
TROL-D1, CONTROL-D2, and CONTROL-D3) experienced
the exact same procedure as the ETOHMW animals with the
exception of the ethanol exposure.

Following periadolescent ethanol preexposure, all animals
were group housed in normal colony conditions for
approximately 42 days until testing began. On approximately
PD 70, animals were singly housed and allowed to acclimate
for 24 h prior to the start of a 5-day water restriction
schedule. During water restriction (days 1–5), animals
received 30 min of unlimited access to water once daily.
On the day of conditioning (CD; day 6), animals were given
15 min of unlimited access to a .15% w/v saccharin solution.
Immediately following the removal of the saccharin bottles all
animals received a 2.5 g/kg i.p. injection of ethanol. About
48 h following conditioning (day 8), development of a CTA
was assessed by allowing animals 15 min of unlimited access
to saccharin solution. Extinction, the dissociation between the
CS and the US, was measured by the same test procedure for
an additional 2 days in order to rule out a generalized
decrement in saccharin responding (days 9 and 10; Barker
and Johns, 1978).

3.2. Results

3.2.1. Blood ethanol concentrations and body weights
Weight loss and BECs corresponding to the periadolescent

ethanol exposure are presented in Table 1. Blood ethanol
concentrations at the time of removal from the inhalation
chambers did not significantly differ among the adolescent
treatment groups. Initial and final body weights did not
significantly differ among ethanol exposed and control groups
for all experiments. Typically, mild weight loss (3–6%) is
similar for all groups undergoing the preexposure treatment.

3.2.2. EtOH-induced CTA
The complete results of Experiment 1 are presented in Figs.

1 and 2. A 2×4 ANOVA was used to analyze saccharin
consumption for all treatment groups on the day of condition-
ing. For the ETOHCE treatment groups and respective
controls, the ANOVA revealed that there were no significant
differences in saccharin consumption during conditioning (see
CD values in Fig. 1). An additional 2-way ANOVA revealed
no significant differences in the amount of saccharin consumed
on the day of conditioning for the multiple withdrawal animals
(see CD values in Fig. 2). These results suggest that any
differences observed in saccharin consumption throughout the
remaining test days reflect a difference in experimental
manipulation. To demonstrate that a significant ethanol-
induced CTA occurred in all continuously exposed animals
and controls, we compared by paired t-test overall saccharin
consumption on the day of conditioning to overall saccharin
consumption on TD1 for the entire group. Overall, animals
drank significantly less saccharin on TD1, demonstrating a
significant ethanol-induced CTA (T124=5.497, p< .001).
Additionally, all animals in the multiple withdrawal study
drank significantly less saccharin on TD1, as compared to
conditioning day, demonstrating a significant ethanol-induced
CTA (T125=2.318, p=.022).



Fig. 1. The effects of continuous ethanol exposure during adolescence on the aversive properties of ethanol during a subsequent adult exposure (N=10–20 mice/
group). Bar graphs depict between group saccharin consumption with data averaged across test days. There was no significant difference in the amount of saccharin
consumed on the day of conditioning (CD). Animals pre-exposed to continuous ethanol vapor during adolescence as well as those animals that received DZP treatment
only during adolescence drank significantly more saccharin than did control animals. ANOVAwas used to analyze all experimental groups however, for clarity the data
are depicted in separate graphs. Extinction training, the dissociation between the CS and the US, was analyzed for an additional 2 days. Asterisks indicate that saccharin
consumption differs from CONTROL-D0 group (data collapsed across test days; p<.05).

409D.L. Graham, J.L. Diaz-Granados / Pharmacology, Biochemistry and Behavior 84 (2006) 406–414
A 2×4×3 mixed design ANOVA (EtOH×DZP×test day)
was used to analyze saccharin consumption for ETOHCE
animals and their controls throughout the extinction phase. The
ANOVA revealed a significant overall DZP group difference, F
(3,116)=4.484, p<.01, as well as a significant EtOH×DZP
interaction, F(3,116)=3.451, p<.05. There was also a sig-
nificant within subjects effect of test day, F(2,232)=92.081,
p<.001, test day×EtOH interaction, F(2,232)=3.074, p<.05,
and test day×DZP interaction, F(2,232)=2.166, p<.05. As
depicted in Fig. 1, post hoc analysis using FLSD revealed a
significant group difference in saccharin consumption (with
data collapsed across test day) such that animals treated with
EtOH drank significantly more saccharin than did control
animals (p<.01). Thus, adult animals exposed to EtOH during
periadolescence (ETOHCE-D0) demonstrated an attenuated
(reduced) EtOH-induced condition taste aversion (CTA), as
compared to control animals. Additionally, animals in the
ETOHCE-D1, ETOHCE-D2, and ETOHCE-D3 groups also
demonstrated an attenuated CTA, drinking significantly more
saccharin across test days, as compared to control animals
Fig. 2. The effects of multiple withdrawal episodes during adolescence on the avers
depict between group saccharin consumption with data averaged across test days. The
of conditioning (CD). Animals pre-exposed to multiple withdrawal episodes (regardle
did control animals (with or without DZP). Asterisk above solid line indicates sacch
from controls not treated with EtOH (regardless of DZP treatment) by FLSD (p<.05
data are depicted in separate graphs. Extinction training, the dissociation between th
(p<.01). Furthermore, control animals that received diazepam
treatment only (2.0 mg/kg and 3.0 mg/kg) differed significantly
from the CONTROL-D0 group (p<.01), while animals treated
with 1.0 mg/kg DZP drank comparable amounts of saccharin
across the testing procedure. These data indicate that periado-
lescent DZP treatment alone (without EtOH) can significantly
alter adult EtOH-induced conditioned taste aversion learning.

An additional 2×4×3 mixed design ANOVA (EtOH×
DZP×test day) was used to analyze saccharin consumption
for ETOHMW animals and their controls throughout the
extinction phase (Fig. 2). The ANOVA revealed a significant
overall EtOH group difference, F(1,118)=4.639, p< .05, as
well as a DZP group difference, F(3,118)=2.737, p<.05. There
was also a significant within subjects effect of test day, F
(2,236)=52.890, p<.001, and test day×DZP interaction, F
(6,236)=2.745, p<.05. While not significant, there was a
strong trend toward a significant EtOH×DZP×test day inter-
action, F(6,236)=2.006, p= .06. As depicted in Fig. 2, post hoc
analysis using FLSD test revealed an EtOH group difference in
saccharin consumption such that adolescent MWanimals drank
ive properties of ethanol during adulthood (N=10–17 mice/group). Bar graphs
re was no significant difference in the amount of saccharin consumed on the day
ss of DZP treatment) during adolescence drank significantly more saccharin than
arin consumption in EtOH-treated animals (regardless of DZP treatment) differs
). ANOVAwas used to analyze all experimental groups, however, for clarity the
e CS and the US, was analyzed for an additional 2 days.
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significantly more saccharin than did controls (data collapsed
across DZP treatment and test day; p<.05). Additionally, adult
animals treated with DZP (1.0, 2.0, and 3.0 mg/kg; data
collapsed across EtOH treatment) during adolescence drank
significantly more saccharin than did control animals (0.0 mg/
kg) on TD1 (p<.05). Similar to the CE study, these findings
indicate that adolescent EtOH exposure alone, as well as
adolescent DZP exposure alone may reduce the aversive
properties of ethanol during a subsequent adult exposure.

Previous findings from our laboratory indicate that adoles-
cent ethanol treatment followed by multiple withdrawal
episodes (as compared to ethanol treatment followed by a
single withdrawal episode) produces a greater degree of
attenuation during subsequent adult ethanol-induced CTA. In
the present study, the two adolescent EtOH treatment groups
(CE and MW) drank significantly different amounts of
saccharin during conditioning, making any subsequent sac-
charin intake comparisons impossible. However, results
indicate that adult animals exposed to continuous ethanol
vapor (one withdrawal episode) during adolescence drank
approximately 30% less saccharin on TD1 (as compared to CD),
while adult animals exposed to multiple withdrawal episodes
during adolescence drank approximately 10% more saccharin
on TD1 (as compared to CD). On average, control animals
(CECON and MWCON) drank approximately 60–70% less
saccharin on TD1. These data are consistent with our previous
findings and suggest that adolescent MW treatment produces
less of an aversion than adolescent CE treatment.

4. Experiment 2: adult ethanol withdrawal

4.1. Specific procedures

This experiment was identical to the first experiment with the
exception that ethanol preexposure followed by treatment with
DZP was administered during early adulthood. On PD 70, adult
mice were randomly assigned to 1 of 16 treatment groups.
Treatment groups included ETOHCE-D0, ETOHCE-D1,
ETOHCE-D2, ETOHCE-D3, CONTROL-D0, CONTROL-
Fig. 3. Continuous ethanol exposure in adult animals has no effect on the aversive
10 mice/group). Bar graphs depict between group saccharin consumption with data a
day of conditioning (CD). All animals displayed a similar degree of ethanol-induced c
on TD1 as compared to conditioning day.
D1, CONTROL-D2, CONTROL-D3, ETOHMW-D0,
ETOHMW-D1, ETOHMW-D2, ETOHMW-D3, CONTROL-
D0, CONTROL-D1, CONTROL-D2, and CONTROL-D3.
About 6 weeks after ethanol exposure the associative properties
of ethanol were assessed. The conditioning procedure was
identical to the CTA procedure described in Experiment 1,
which consisted of 5 days of water restriction, 1 day of
conditioning, 1 day of recovery, and 3 test days.

4.2. Results

4.2.1. Blood ethanol concentrations and body weights
Weight loss and BECs corresponding to the adult ethanol

exposure are presented in Table 1. Blood ethanol concentrations
at the time of removal from the inhalation chambers did not
significantly differ among the adult treatment groups. Initial and
final body weights did not significantly differ among ethanol
exposed and control groups for all experiments. Typically, mild
weight loss (3–6%) is similar for all groups undergoing the
ethanol pretreatment.

4.2.2. EtOH-induced CTA
The complete results of Experiment 2 are presented in

Figs. 3 and 4. A 2×4 ANOVA was used to analyze the
amount of saccharin consumed during conditioning for the
continuously exposed animals and multiple withdrawal
animals. No significant differences were found during
conditioning for all groups. Therefore, any differences
observed in saccharin consumption throughout the remaining
test days reflect a difference in experimental manipulation. In
addition, paired t-test analysis across the entire group was
conducted to analyze saccharin consumption between con-
ditioning day and test day 1. Animals displayed a significant
reduction in saccharin consumption on TD1 as compared to
CD (T77=6.987, p<.001 and T81=5.944, p<.001, for CE
and MW animals, respectively). These data indicate that adult
animals treated with ethanol 6 weeks prior to conditioning, as
well as control animals not exposed to ethanol display a
significant CTA.
properties of alcohol during a subsequent EtOH-induced taste aversion (N=8–
veraged across test days. All animals drank similar amounts of saccharin on the
onditioned taste aversion as evidenced by a significant decrease in consumption



Fig. 4. The effects of multiple withdrawal episodes during adulthood on the aversive properties of ethanol during a subsequent adult EtOH-induced taste aversion
(N=8–10 mice/group). Bar graphs depict between group saccharin consumption with data averaged across test days. All animals drank similar amounts of saccharin
on the day of conditioning (CD). Asterisk indicates ETOHMW-D3 and CONTROL-D1 differ in saccharin consumption from MWCON-D3 (p<.05).
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Two separate 2×4×3 mixed design ANOVAs (EtOH×
DZP×test day) were used to analyze saccharin consumption
throughout the extinction phase for both EtOH exposure
paradigms (CE and MW). In the case of adult animals exposed
to continuous ethanol vapor, the ANOVA revealed no
significant EtOH group effect, no significant DZP group effect,
or any significant EtOH×DZP interaction (Fig. 3). There was,
however, a significant within subjects effect of test day, F
(2,136)=29.725, p< .001, indicating that animals displayed
extinction, the disassociation between the CS and US.

In the case of adult animals exposed to multiple withdrawal
episodes, followed by DZP treatment, the ANOVA (EtOH×
DZP×test day) revealed no significant between group effect,
but a significant EtOH×DZP interaction, F(3,74)=3.154,
p=.030. As depicted in Fig. 4, subsequent analysis of main
effects (data collapsed across test days) revealed that animals
treated with CONTROL-D3 drank significantly less saccharin
than did adult animals in the ETOHMW-D3 group and
CONTROL-D1 group (p<.05). This result is rather difficult
to explain, but may be due to the fact that animals in that
MWCON-D3 group drank slightly less saccharin on TD2 as
compared to TD1, an unusual result during extinction learning
in a one-trial taste aversion procedure. As was expected, there
was also a significant within group effect of time, F(2,148)=
34.196, p<.001, indicating that animals displayed extinction
learning.

5. Discussion

Adult C3H mice experiencing withdrawal (single or multiple
episodes), DZP treatment only, or EtOH exposure followed by
DZP treatment during the period of periadolescence demon-
strated a reduced ethanol-induced CTA (less of an aversion), as
compared to animals that received no EtOH exposure during
periadolescence. Alternatively, adult animals experiencing
withdrawal (single or multiple episodes), chronic EtOH
followed by DZP, or DZP alone displayed an EtOH-induced
CTA that was indistinguishable from untreated controls. Based
on these findings, it is apparent that adolescent, but not adult,
ethanol and/or DZP exposure experienced 6 weeks prior to a
subsequent exposure can produce long-lasting changes in the
aversive properties of ethanol. This is consistent with a
previously published report indicating that periadolescent
EtOH exposure increases the reinforcing properties of ethanol
(Rodd-Henricks et al., 2002).

Given that multiple withdrawal episodes further attenuates
the conditioning of aversive properties associated with EtOH
(Graham and Diaz-Granados, 2001, abstract), the primary
objective of the present experiment was to investigate the role of
withdrawal experience on the long-term effects of periadoles-
cent ethanol exposure. Our approach was to administer DZP, a
drug previously shown to reduce withdrawal symptoms
(Riihioja et al., 1997), during peak ethanol withdrawal.
Surprisingly, periadolescent DZP treatment, alone or in
combination with EtOH, was sufficient to reduce the aversive
properties of ethanol during a subsequent adult exposure.
Therefore, rather than ameliorating withdrawal and lessening
the attenuation of the conditioned taste aversion, DZP
administration during the periadolescent period mimicked the
long-term effect of an attenuated EtOH-induced CTA. It is
important to note that in contrast, the administration of EtOH/
DZP or DZP only during adulthood, experienced 6 weeks prior
to conditioning, had minimal effect on adult CTA, suggesting
that the adolescent developing CNS is more susceptible to the
long-lasting effects of EtOH and/or DZP exposure. Given the
common mechanism of action between EtOH and DZP, it is
reasonable to surmise that EtOH-induced changes in the
periadolescent GABA system are involved in the long-term
effects of periadolescent EtOH exposure on the aversive
properties of EtOH in adulthood.

To date, benzodiazepine administration remains one of the
most effective treatments in the management of alcohol
withdrawal (Manikant et al., 1993; Mayo-Smith, 1997;
Addolorato et al., 1999). Chronic benzodiazepine treatment
will produce withdrawal symptoms similar to that observed
during ethanol withdrawal (Hallstrom and Lader, 1981; Rickels
et al., 1983; Greenblatt et al., 1983; Korpi et al., 1997) and
benzodiazepine withdrawal can occur following high doses as
well as moderate and low doses of benzodiazepines (Hallstrom
and Lader, 1981). The ability of benzodiazepines to suppress
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alcohol withdrawal symptoms may be due to their antic-
onvulsant and anxiolytic properties or their ability to fully
substitute for EtOH. Many human alcoholics indicate that
alcohol and benzodiazepines (specifically DZP) are used
interchangeably and produce similar effects (Kostowski and
Bienkowski, 1999). Similar discriminative or subjective effects
of certain recreational drugs contribute to the initiation of drug
use and/or relapse (Stolerman, 1992). In animals, the dis-
criminative properties of certain benzodiazepines exhibit
complete substitution for ethanol (Kostowski and Bienkowski,
1999; Bienkowski et al., 1997; Lytle et al., 1994). One possible
interpretation of the findings presented here is that periadoles-
cent EtOH followed by DZP, or DZP alone, produced subjective
effects similar to that experienced during a subsequent adult
EtOH exposure, thereby producing an attenuated adult ethanol-
induced CTA. Therefore, it is reasonable to suggest that
periadolescent animals exposed to DZP (either alone or
following EtOH) experienced benzodiazepine withdrawal, a
phenomenon known to be physiologically and behaviorally
similar to that of alcohol withdrawal. Additional studies are
needed to further investigate this possibility.

Another interpretation of our findings may be that tolerance
and/or cross-tolerance exists between ethanol and DZP
following periadolescent EtOH/DZP exposure. Neonatal,
perinatal, or periadolescent EtOH exposure has been shown to
produce tolerance during subsequent EtOH testing (Little et al.,
1996; White et al., 2000; Silveri and Spear, 2001). For example,
adult animals chronically exposed to EtOH during the
periadolescent developmental period display greater tolerance
to the ataxic effects of a subsequent EtOH challenge dose (Diaz-
Granados et al., 1999, abstract). Similarly, adult animals
chronically exposed to benzodiazepines also display tolerance
to the sedative effects of the drug during a subsequent BZD
challenge (Fernandes et al., 1999; File, 1986). Although there
are no known investigations of the effects of periadolescent
BZD exposure on adult tolerance, a number of findings also
indicate that neonatal or perinatal BZD exposure will produce
benzodiazepine tolerance in mature animals (File, 1986).
Furthermore, chronic EtOH exposure will produce cross-
tolerance to certain benzodiazepines and barbiturates (Toki et
al., 1996; Newman et al., 1986; Curran et al., 1998), and
benzodiazepine dependent animals display cross-dependence to
ethanol (Chan et al., 1988, 1990; Khanna et al., 1998). Thus, it
is possible that one of the effects of either EtOH or DZP
administration during the periadolescent period is a lasting
tolerance and/or cross-tolerance decreasing the aversive proper-
ties of either agent during a subsequent adult exposure. Further
investigations into the effects of EtOH and/or DZP exposure
during periadolescence on the development of tolerance to both
agents as well as other similar agents are warranted.

Specific behavioral and pharmacological studies show that
some of the deleterious effects of ethanol are more pronounced
in periadolescent animals as compared to adult animals (York
and Chan, 1994; Silveri and Spear, 2000, 2001). For example,
periadolescent animals as well as periadolescent humans are
more sensitive to the memory-impairing effects of alcohol than
are adults (Markwiese et al., 1998; White et al., 2000; Acheson
et al., 1998). Thus, a possible explanation for the present
findings may be that periadolescent EtOH and/or DZP
administration induced long-term learning impairments. This
possible explanation is supported by studies of long-term
potentiation and NMDA-mediated activity in hippocampal
slices showing that periadolescent neurons are more sensitive to
ethanol inhibition than adult neurons (Swartzwelder et al.,
1995a,b). However, in contrast, other behavioral studies
indicate that periadolescent animals are less sensitive to the
deleterious effects of ethanol. For example, periadolescent
animals displayed less motor impairment and sedation follow-
ing high ethanol challenge doses which typically produce loss
of the righting reflex in adult animals (Moy et al., 1998; Silveri
and Spear, 1998; Little et al., 1996). In fact, recent studies
investigating the long-term effects of periadolescent ethanol
exposure on associative learning indicate that periadolescent
ethanol does not produce deficits in associative learning
mechanisms responsible for CTA learning (Yttri et al., 2004).
Therefore, it is unlikely that the attenuated CTA observed in this
study is a result of periadolescent ethanol-induced learning
impairments.

Clearly, exposure to EtOH, EtOH followed by DZP, or
DZP alone during the periadolescent developmental period
reduced the aversive properties of ethanol during a subse-
quent adult exposure. However, exposure to the same drugs
during adulthood produced minimal effects. Therefore, the
most plausible explanation for the present finding is that
exposure to EtOH and DZP during the periadolescent
developmental period results in a long-term change in the
normal development of the CNS. There is substantial
evidence confirming that the periadolescent brain is distinct
from that of the adult brain (Spear, 2000). A multitude of
molecular and physiological changes occur during the period
of adolescence. Specific changes include a substantial
reduction in the number of synaptic connections, alterations
in certain receptor levels, most notably GABA-A, and
fluctuations in neurotransmitter levels (Rakic et al., 1994;
Laurie et al., 1992). GABA dependent benzodiazepine
receptors in the cerebral cortex are present on PD 1, undergo
substantial increases during the first week of life and then
decrease to adult levels during the 4th week of postnatal
development (Lippa et al., 1981). Furthermore, the alpha
subunit of the GABA-A receptor, which is thought to mediate
benzodiazepine binding, has also been shown to exhibit
postnatal changes during the first month of life (MacLennan
et al., 1991). Again, it is plausible that normal developmental
processes are disrupted by EtOH and/or DZP during
adolescence resulting in long-lasting modifications with
respect to subsequent EtOH responsiveness.

In addition to the normal developmental changes seen during
the periadolescent developmental period, ethanol interacts with
the developing adolescent CNS in a manner distinct from that of
the mature brain. For example, binge drinking-induced brain
damage in specific brain regions is greater in adolescent animals
as compared to adult animals (Crews et al., 2000), and repeated
ethanol exposure produces significant age-dependent changes
in basal mesolimbic dopamine levels (Philpot and Kirstein,
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2004). While there are no known published studies investigat-
ing the long-term neurobehavioral effects of DZP or EtOH/DZP
administration during the period of adolescence, neonatal and
perinatal DZP administration is known to produce long-term
behavioral and physiological effects (Schroeder et al., 1994;
Miranda et al., 1990; File, 1986). Due to the relatively plastic
nature of the periadolescent CNS, it is possible that DZP
exposure (or the combined exposure of EtOH and DZP) during
adolescence produces similar alterations in BZD receptor
sensitivity, resulting in a reduced aversion to EtOH during
adulthood. The above ontogenetic findings, taken together with
additional research demonstrating that EtOH and DZP interact
with the GABA-A receptor complex, and that the interaction of
EtOH and DZP with the GABA-A receptor complex varies
during development, suggest that periadolescent exposure to
these drugs may produce long-term changes at the level of the
GABA-A receptor, thereby altering EtOH responsiveness
during adulthood.

These findings demonstrate that EtOH exposure as well as
EtOH exposure followed by DZP treatment during adolescence,
but not adulthood, can alter EtOH responsiveness during a
subsequent adult exposure. In addition, the administration of
DZP alone during adolescence is sufficient to produce long-
term changes in ethanol responsiveness during adulthood.
Currently, alcohol is still the drug of choice among junior high
and high school students. Young individuals are also experi-
menting with other depressive agents, including Valium
(Diazepam; National Household Survey on Drug Abuse,
2002). Although the objective of the present study was not to
investigate the long-term effects of adolescent diazepam
exposure, it is important to note the findings presented here
suggest that the recreational use of alcohol and/or Valium
(together or alone) during the periadolescent period of
neurodevelopment may lead to long-term neurological changes.
These long-term neurological changes can subsequently
produce impairments in the adult response to alcohol and
other drugs of abuse.
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